

Lung Remodeling After Pulmonary Exposure of Mice to Cerium oxide Nanoparticles - Role of Autophagy

Balasubramanayam Annangi bala.annangi@inserm.fr 10th Nov. 2016

INSTITUT MONDOR DE RECHERCHE BIOMÉDICALE

Introduction

Lung Fibrosis: Airway walls and bronchial thickening, irregular scars composed of dense collagen fibers, fibroblastic proliferation and cystically remodeled airspaces (Araya et al. 2008, 2013)

NPs can cause lung fibrosis

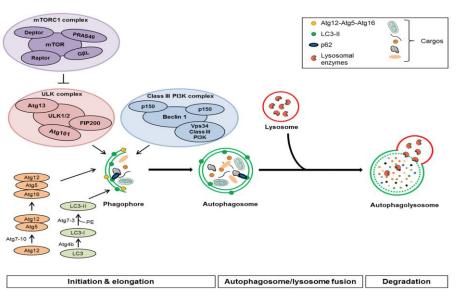
- Carbon nanotubes (CNTs) could cause progressive fibrotic response in the alveolar tissues of mice lungs (Shvedova et al. 2008, Mercer et al. 2011)
- Nickel NPs are implicated in exaggerated lung and airway remodeling in mice (Glista-Baker et al. 2014)
- Crystalline silica NPs could cause silicotic nodules with collagen fibers and dust-laden macrophages surrounding the mature collagen (Fujimura, 2000)
- CeO₂ NPs would induce inflammation, air/blood barrier damage, and phospholipidosis with enlarged alveolar macrophages leading to lung fibrosis (Ma et al. 2011, 2012, 2014)

Unanswered questions:

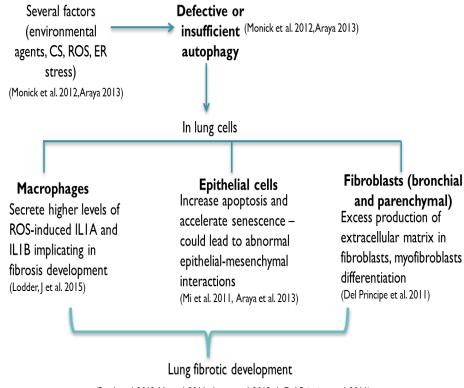
- Where does fibrotic lung remodelling occur? (Bronchial and/or Alveolar)
- What are the underlying mechanisms?

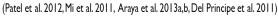
Defective Autophagy has a role to play in idiopathic pulmonary fibrosis

(Mi et al. 2011, Patel et al. 2012, Araya et al. 2013)



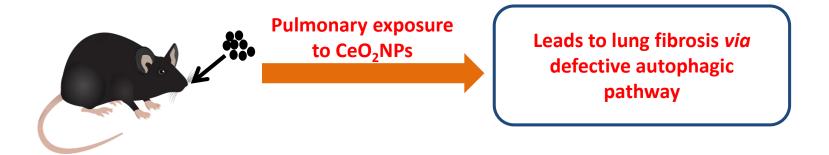
Autophagy: potential mechanism for fibrosis?


Autophagy: Turnover of unnecessary or dysfunctional cellular components


Induction, Autophagosome formation, Fusion and Degradation

Cohignac et al. 2014

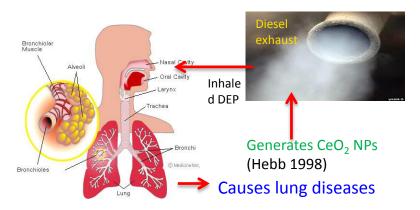
Autophagy in fibrosis

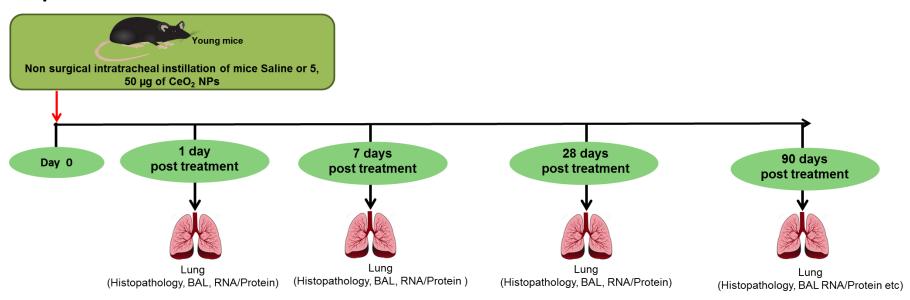


Hypothesis

Objectives

- To characterize the pulmonary fibrosis induced by exposure of mice to CeO₂NPs
- 2) To evaluate the role of autophagy in the fibrotic response to CeO₂NPs

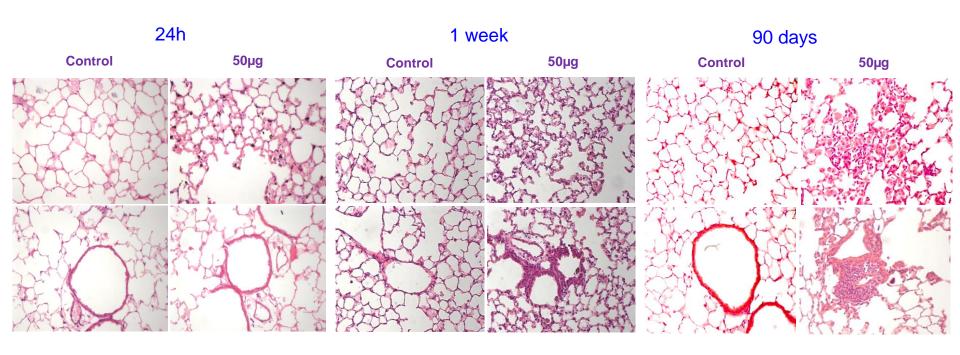



Methods

Nanoparticles used: CeO₂NPs, (99.9% purity, Size range 15-30nm, spherical)

Diesel fuel catalysts to reduce the emission of particulate matter in diesel

Exposure Protocol:

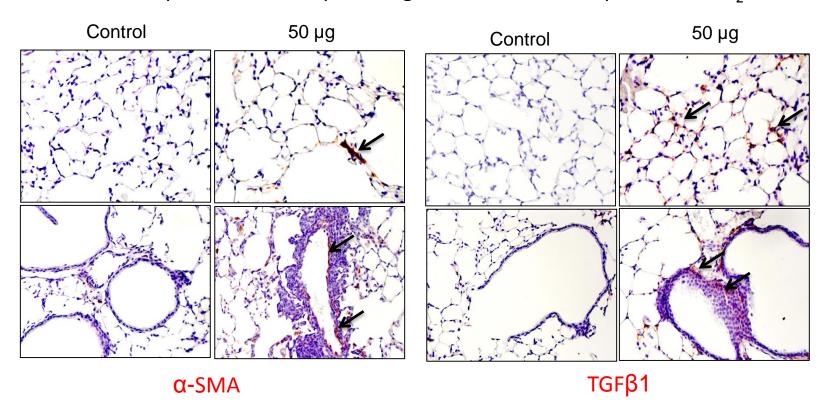


Results:

CeO₂NPs induce lung fibrosis in mice

Alveolar and brocheolar thickening or inflammation observed in mice exposed to nanoceria after 1 week and 90days of exposure

(n=6)



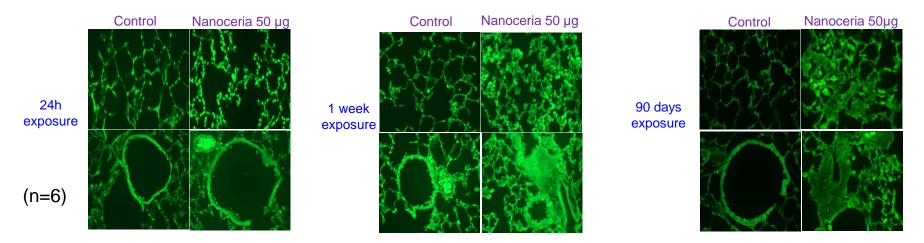
CeO₂NPs induce lung fibrosis in mice

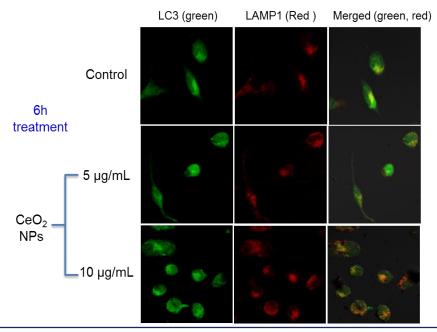
 α -SMA and expression of TGF- β 1in lung sections of mice exposed to CeO₂NPs

90 days exposure

IHC

(n=6)


• An increase in α -SMA and TGF- β 1expression expression observed

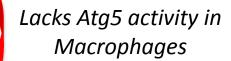


Induction of autophagy in GFP-LC3 mice exposed to CeO₂NPs

LC3 seems to be accumulated in macrophages in vivo

CeO₂NPs activate autophagy in macrophages a evidenced by co-localisation of LC3 and LAMP1

Role of autophagy in macropahes?

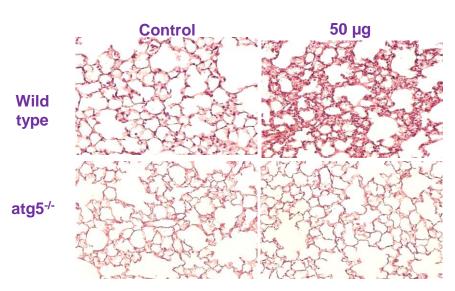


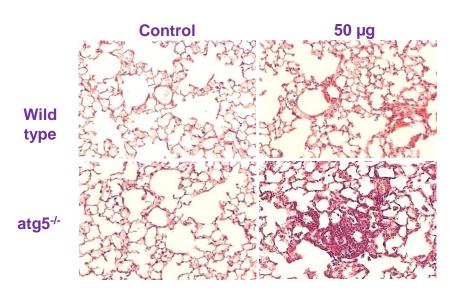
Atg5: an early marker of autophagy

What if Atg5 is floxed in macrophages?

Conditional knockout of Atg5 gene in myeloid lineage

Defective autophagy in Macrophages



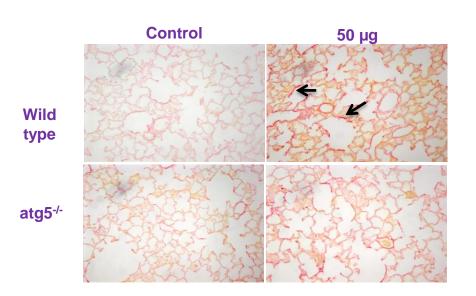


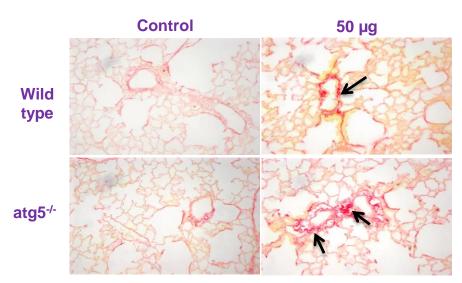
Mice exposed to CeO₂NPs

- Alvelolar thickening or diffused inflammation in Wild type mice exposed to CeO₂NPs
 - Atg5^{-/-} mice are protected from CeO₂NPs induced alveloar thickening

- Bronchial thickening in both wild type and atg5^{-/-} mice exposed to CeO₂NPs
- Bronchial inflammation characterized by macrophages inflitration in atg5^{-/-} mice

28 days exposure


HE staining

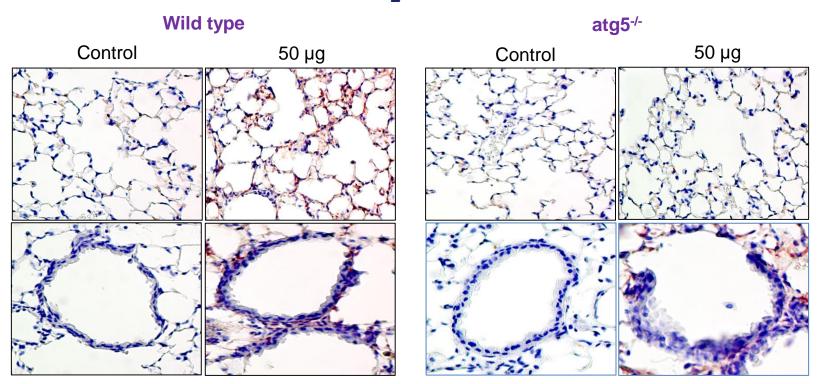


Mice exposed to CeO₂NPs

- Type 1 collagen deposition in alveloli of wild type mice exposed to CeO₂NPs
- No Type 1 collagen deposition in alveoli occured in atg5^{-/-} mice exposed to CeO₂ NPs

- Type 1 collagen deposition in bronchi of wild type mice treated with CeO₂NPs
- Type 1 collagen bundles in bronchi of atg5^{-/-} treated with CeO₂NPs

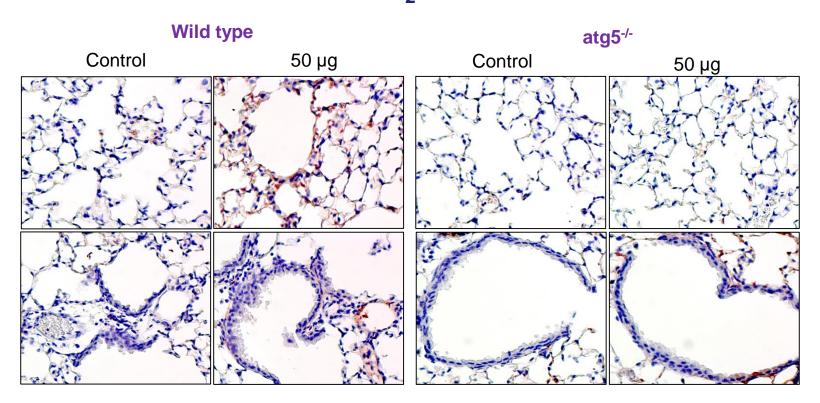
28 days exposure


Picro sirius red staining

α -SMA expression in wild type and atg5^{-/-} mice exposed to CeO_2NPs

- Increased α -SMA in alveloli of wild type but not in alveloli of in atg5^{-/-} mice
 - Similar increase in α -SMA in bronchi of wild type and atg5^{-/-} mice

28 days exposure

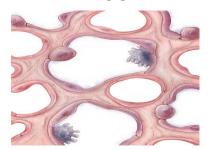

IHC: α-SMA

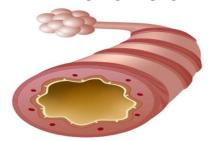
TGF-61expression in Wild type and atg5^{-/-} mice exposed to CeO₂NPs

- Expression of TGF-β1 in alveloli and bronchi in wild type mice noticed
- Atg5^{-/-} mice are protected from CeO_2NPs -induced accumulation of TGF- $\beta 1$ in alveoli but no protective effect in bronchi

28 days exposure

IHC:TGF-β1





Summary

Alveoli

Bronchiole

	Mice exposed to CeO ₂ NPs	
Fibrotic markers	Wild type	atg5 ^{-/-}
Thickening/ Inflammation	$\uparrow \uparrow \uparrow$	\leftrightarrow
Typel collagen	$\uparrow \uparrow \uparrow$	\leftrightarrow
тдгβ1	$\uparrow \uparrow \uparrow$	\leftrightarrow
αSMA	$\uparrow \uparrow \uparrow$	\leftrightarrow

	Mice exposed to CeO ₂ NPs	
Fibrotic markers	Wild type	atg5 ^{-/-}
Thickening/ Inflammation	$\uparrow \uparrow$	$\uparrow \uparrow \uparrow$
Typel collagen	$\uparrow \uparrow \uparrow$	$\uparrow \uparrow \uparrow$
TGFβ1	↑	↑
αSMA	$\uparrow \uparrow \uparrow$	$\uparrow \uparrow$

Lack of ATG5 gene in myeloid lineage seems to be protective in alveoli but not in bronchi of atg5^{-/-} over wild type mice

Autophagy may possibly play a dual role in CeO₂NPs-induced lung fibrosis

Thank you for your attention

Jorge Boczkowski – Director, IMRB Sophie Lanone – Head Team 4, Stéphane Tchankouo-Nguetcheu Marie-Laure Franco-Montoya Philippe Caramelle Arnaud Tiendrebeogo Benjamin Even Shamila Vibhushan Emmanuel Paul Audrey Ridoux

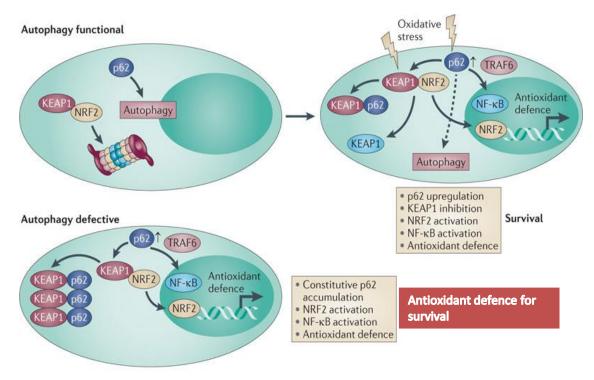
Tél.: +33 (0)1 49 81 37 70 Fax.: +33 (0)1 49 81 39 00

INSERM U955 Hôpital Henri Mondor Faculté de Médecine de Créteil 8, rue du Général Sarrail 94000 Créteil France

www.imrb.inserm.fr contact@imrb.inserm.fr

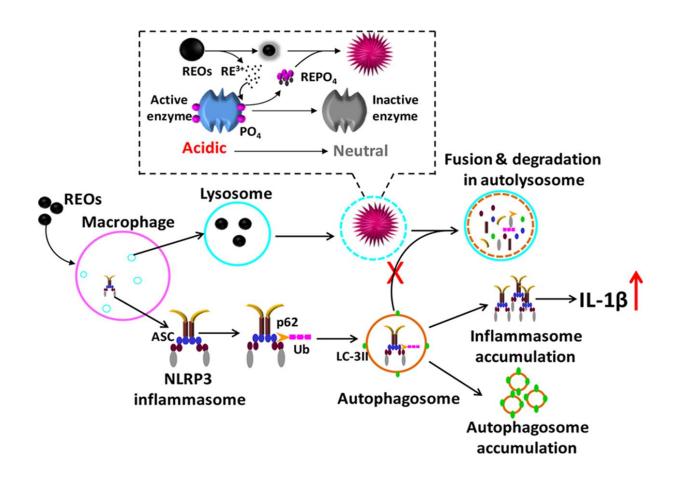
Future studies

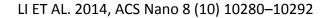
- 1. Characterization of alveolar modifications:
- Quantification of histological modification and markers like Type collagen1, alpha SMA, TGF beta1, elastin,
- To study inflammatory infiltration by macrophages markers
- 2. Characterization of bronchial modifications:
- Quantification of histological modifications and expression of fibrotic markers
- 3. Luminex will be done on BALF samples of 24h, 1week and 90 days exposures
- 4. Mechanisms of pulmonary fibrosis *in vitro*:
- Isolation of bronchial and parenchymal fibroblasts from mice lungs (in progress)
- Exposure to NPs
- Myofibroblasts analysis: α- Sma, collagen, migration and proliferation
- 5. Characterization and role of autophagy: In vitro
- Expression of LC3, p62 and LAMP1 in fibroblasts treated with nanoceria
- Exposing the fibroblasts with supernatants of macrophages treated with nanoceria
- · Co-culture of the fibroblasts with marcophages, exposing to nanoceria
- 6. Analyses of lung sections from WT and atg5-/- mice exposed to nanoceria for 90 days (sections are ready)
- HES, IHC for alphaSMA, TGF beta1, collagen Type III, IV etc, Picro Sirius Red staining for Type 1 collagen etc

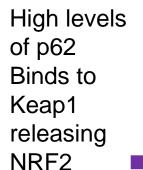


p62 is still subject to autophagy in cells experiencing cellular stress

Autophagy-defective cells and tissues, the autophagy substrate p62 is not degraded


Nature Reviews | Cancer


Nature Reviews Cancer 12, 401-410 2012



Autophagy-defective (ATG5 gene knockout) in cells and tissues, the autophagy substrate p62 is not degraded

constitutive activation of NRF2 and antioxidant defence

counter NP induced oxidative stress

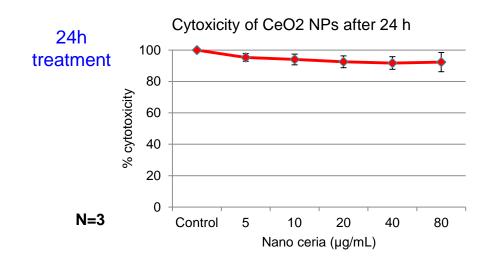
Thank you for your attention

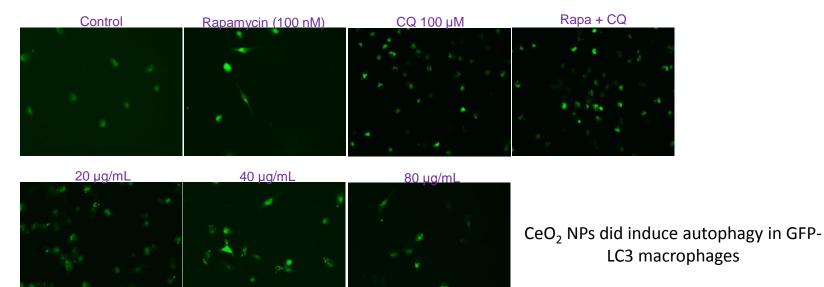
Jorge Boczkowski – Director, IMRB Sophie Lanone – Head Team 4, Stéphane Tchankouo-Nguetcheu Marie-Laure Franco-Montoya Philippe Caramel Arnaud Tiendrebeogo Benjamin Even Shamila Vibhushan Emmanuel Paul Audrey Ridoux

Tél.: +33 (0)1 49 81 37 70 Fax.: +33 (0)1 49 81 39 00

INSERM U955 Hôpital Henri Mondor Faculté de Médecine de Créteil 8, rue du Général Sarrail 94000 Créteil France

www.imrb.inserm.fr contact@imrb.inserm.fr

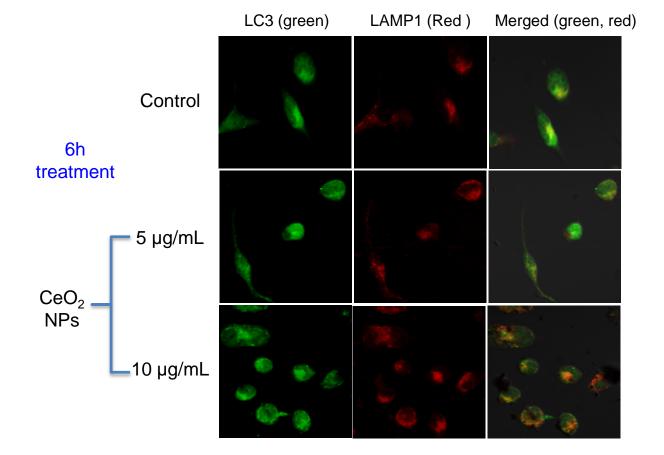


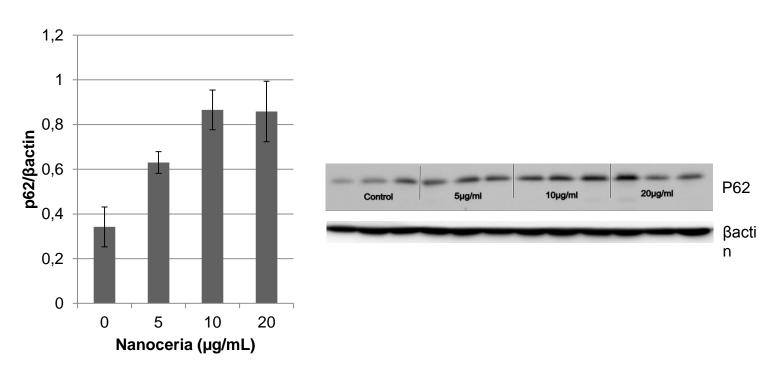

Results:

CeO₂ NPs are not cytotoxic in peritoneal macrophages

Induction of autophagy by CeO₂NPs in GFP-LC3 peritoneal macrophages

6h treatment





Increased expression of P62 in macrophages (RAW 264.7) due to CeO₂NPs

Increased expression of P62 in macrophages could possibly indicate autophagy blockade due to CeO₂NPs

CeO₂NPs could possibly be involved in defective autophagy

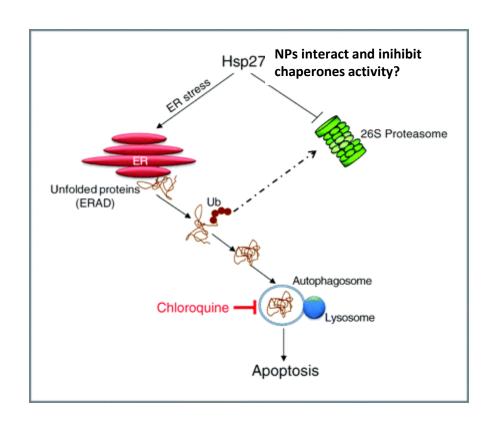



Fig. 2. Auto-regenerative red-ox cycle over CeO₂ NPs surface aids in scavenging oxygen free radicals.

The projected human pulmonary dose for inhalation of CeO2 in diesel exhaust from engines using a CeO2 fuel additive is 0.09 mg/kg body weight for 8 h (Health Effects Institute [HEI] 2001). CeO2 is insoluble particle, and studies have shown that the clearance of CeO2 from the lung may take 20 years or more (Pairon et al. 1994).

As a diesel exhaust product, it is likely that the potential exposure (occupational or environmental) to CeO2 is continuous and the lung burden is cumulative. Assuming a person has been exposed to the projected dose for 40 years with 8 h working day, the total lung burden of CeO2 will be 936 mg/kg (0.09 mg/kg.d 5 d/week 52 week/year 40 years = 936 mg/kg).

Usually, conversion from rodents to humans includes a safety factor of 10-fold.

Therefore, to assess the potential toxicological consequence of CeO2 NPs we used $50\mu g$ well with the range $\,$.

